Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression
نویسندگان
چکیده
Mechanical factors play a key role in regulating the development of cartilage degradation in osteoarthritis. This study aimed to identify the influence of mechanical stress in cartilage and chondrocytes. To explore the effects of mechanical stress on cartilage morphology, we observed cartilages in different regions by histological and microscopic examination. Nanoindentation was performed to assess cartilage biomechanics. To investigate the effects of mechanical stress on chondrocytes, cyclic tensile strain (CTS, 0.5 Hz, 10%) was applied to monolayer cultures of human articular chondrocytes by using Flexcell-5000. We quantified the mechanical properties of chondrocytes by atomic force microscopy. Chondrocytes were stained with Toluidine blue and Alcian blue after exposure to CTS. The expression of extracellular matrix (ECM) molecules was detected by qPCR and immunofluorescence analyses in chondrocytes after CTS. Our results demonstrated distinct morphologies and mechanical properties in different cartilage regions. In conclusion, mechanical stress can affect the chondrocyte phenotype, thereby altering the expression of chondrocyte ECM.
منابع مشابه
Importance of Floating Chondrons in Cartilage Tissue Engineering
BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...
متن کاملCD147 (Extracellular Matrix Metalloproteinase Inducer-EMMPRIN) Expression by Human Articular Chondrocytes
Background: Integrins are a family of transmembrane proteins that allow communication between the extracellular matrix and the interior of cells. Chondrocytes, cells of articular cartilage, express integrins and these molecules appear to have a variety of roles including mechanotransduction. Integrins are known to associate with a number of accessory molecules such as CD147 that may act to regu...
متن کاملExtracellular and Intracellular Mechanisms of Mechanotransduction in Three-Dimensionally Embedded Rat Chondrocytes
PURPOSE Articular cartilage homeostasis involves modulation of chondrocyte matrix synthesis in response to mechanical stress (MS). We studied extracellular and intracellular mechanotransduction pathways mediating this response. METHODS We first confirmed rapid up-regulation of the putative chondro-protective cytokine, interleukin (IL)-4, as an immediate response to MS. We then studied the rol...
متن کاملEmerging Roles of circRNA Related to the Mechanical Stress in Human Cartilage Degradation of Osteoarthritis
Circular RNAs (circRNAs) are involved in the development of various diseases; however, knowledge on circRNAs in osteoarthritis (OA) is limited. This study aims to identify circRNA expression in different regions affected by OA and to explore the function of mechanical stress-related circRNAs (circRNAs-MSR) in cartilage. Bioinformatics was employed to predict the interaction of circRNAs and mRNA...
متن کاملRegulation of chondrocyte gene expression.
Extracellular influences known to affect the regulation of chondrocyte biosynthetic and catabolic activity have been shown to include soluble factors, extracellular matrix and mechanical stress. A balance of these numerous extracellular influences is required for normal function of articular cartilage. It is likely that OA is the result of an imbalance of regulatory influences, ultimately resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016